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Artificial neural network modeling of a
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Abstract

Photodegradation of spent Bayer liquor was carried out in an 18 l pilot scale photoreactor. The experimental data indicated that the
average reaction rate was a complex nonlinear function of various process variables, such as lamp power, catalyst loading, initial solution
pH, liquid batch time, and total organic carbon (TOC) concentration. The experimental data were modeled using feed forward artificial
neural networks (ANN). The networks were trained with 350 sets of input–output patterns using backpropagation algorithm. Out of several
configurations, a three-layered network with eight-neurons in its hidden layer yielded optimal results with respect to data validation. The
optimal model gave excellent predictions with a correlation coefficient of 0.9955. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The last two decades have seen the emergence of a vo-
luminous literature on the development of novel photocat-
alytic processes for the treatment of wastewater containing
toxic and recalcitrant pollutants [1–3]. The advantages of
photocatalysis over other wet aqueous removal routes are
well espoused and include, complete mineralization of the
organic species at relatively mild operating conditions.
In many cases, titania-based compounds are used as the
photocatalysts. The performance of a photoreactor is
strongly influenced by several physicochemical factors,
which are presumably independent variables [4]. However,
the interaction effect of these variables suggests that con-
ventional linear superposition techniques may not yield
adequate model(s) for design purposes. For example, since
photo-excitation of the semiconductor catalyst leads to
the production of holes (positive vacancies) and electrons,
which mediate in the substrate adsorption step(s), most pho-
tocatalytic destruction mechanisms are regarded as redox
processes. Consequently, the pH of the solution impacts
upon the elementary rates, suggesting a distinct interaction
between pH and light intensity or lamp power (considered
experimental input variable). By same token, the optimal

∗ Corresponding author. Tel.:+61-2-9385-5268; fax:+61-2-9385-5966.
E-mail address:a.adesina@unsw.edu.au (A.A. Adesina).

catalyst loading is reportedly dependent on the pH of the
reacting medium since particle aggregate size is influenced
by prevalent electrostatic field within the solution [2]. This
in turn attenuates the effective light distribution. These
observations provide evidence of a latent linkage between
pH, catalyst loading and light intensity. Although detailed
mechanistic understanding to de-couple these variable in-
teraction effects is unknown, effective process design may
still be achieved by using modeling paradigms that account,
and indeed take advantage of multiple interplay of factors
to describe, predict and ultimately optimize process perfor-
mance. It is in this context that the ANN modeling presents
itself as a veritable approach [5].

In recent years, the concept of artificial neural networks
(ANN) has gained wide popularity in many areas of chem-
ical engineering [5]. The ability of ANN to recognize and
reproduce cause–effect relationships through training, for
multiple input–output systems, makes them efficient to rep-
resent even the most complex systems [6]. In general, the
rate of reaction in heterogeneous photocatalytic reactors
is a complex nonlinear function of catalyst loading, light
intensity, initial solution pH, and reactant concentration.

In this paper, we have demonstrated the use of this pow-
erful technique (ANN) in analyzing input–output pattern
for a batch photoreactor. A set of 350 data points for the
photodegradation of spent Bayer liquor in an 18 l pilot scale
reactor were used to train the neural nets [7]. The input layer
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of the neural net consisted of catalyst loading, light intensity,
initial solution pH and reactants concentration and the out-
put layer contained one neuron—the average reaction rate.

2. Experimental details

2.1. Apparatus

A schematic of the 18 l reactor is shown in Fig. 1. The
outer chamber was a stainless steel vessel (i.d. = 20 cm) in-
side which a commercial UV lamp was suspended from the
top flange through double O-ring seals. The UV lamp was
enclosed in a double-walled quartz hollow U-tube (o.d. =
4 cm) through which water was passed at 1.5 l min−1 as
coolant to maintain reaction isothermality and to remove
IR fraction of the incident radiation. Monitoring ports for
pH, temperature and telescopic UV detector/radiometer were
provided at indicated locations. Iwaki magnetic pumps were
used for all liquid delivery (water and diluted Bayer liquor)
while electronic mass flow controllers were used to meter
all gas flow rates. Air from the flow controller was passed
upwards through the stationary column of Bayer solution
containing suspended titania particles via a 70�m stainless
mesh distributor. The effective height of reacting liquid col-
umn was 80 cm, and four sampling ports were provided at

Fig. 1. A Schematic of pilot plant reactor.

axial positions,Z = 10, 30, 50, and 70 cm. The gas flow
rates ranged 1.0–10.0 l min−1 (τG = 2–18 min).

2.2. Materials and methods

Titania (>99% anatase) was obtained from Aldrich Chem-
icals and used as supplied in all runs. Ordinary domestic
water was used to dilute the industrial Bayer liquor. HCl
was used to adjust the pH of the slurry prior to reaction.
Ultra-pure N2 gas (flowing over the external surface of lamp
was used to remove ozonized air) was obtained from Linde,
Sydney. Ambient compressed air was used as the feed gas
for the reactor. A TPS Digital pH meter was used for con-
tinuous pH monitoring. Light intensity was measured by
an IL1400 radiometer/detector (International Light, MA,
USA) calibrated for 265–332 nm. Steady state aliquots were
taken for different liquid and gas holdup times and analyzed
for total carbon (TC) and total organic carbon (TOC) on a
Shimadzu TOC Analyzer 5000.

3. Bayer liquor

Bayer liquor is a dark and viscous solution produced in
the alumina refineries during caustic digestion of bauxite
ore. In this process, alumina (Al2O3) as well as other high
molecular weight organic compounds (essentially humic
acids) associated with the ore are also converted to sodium
salts (mostly aluminate, carbonate and oxalate). This results
in substantial loss (>10%) in caustic solution which should
be recycled to the digestion unit. Although sodium carbon-
ate may be readily treated with lime to yield NaOH and
CaCO3, the removal of sodium oxalate is difficult. Owing
to its low solubility in Bayer liquor, sodium oxalate easily
crystallizes during alumina precipitation. This leads to in-
creased generation of alumina trihydrate fines, and hence,
poor hydrate classification efficiency. Additionally, sodium
oxalate is a pollutant and its disposal must satisfy strict
statutory environmental regulations [8].

In this study, the photodegradation of sodium oxalate in
spent Bayer liquor was carried out to recover sodium hydrox-
ide. Since the original Bayer liquor is a thick and viscous
solution, the present pump capabilities did not allow the pro-
cessing of pure Bayer liquor. Therefore, the feed to the reac-
tor was diluted using water. Different values of dilution ratio
were used, where the dilution ratio is defined as the ratio of
volume of water added to the volume of pure Bayer liquor.

4. Artificial neural networks (ANN)

ANN are direct inspiration from the biology of human
brain, where billions of neurons are interconnected to
process a variety of complex information. Accordingly, a
computational neural network consists of simple processing
units called neurons (cf. Fig. 2). In general, a neural net, as
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Fig. 2. An artificial neuron.

shown in Fig. 3, is parallel interconnected structure consist-
ing of: (1) input layer of neuron (independent variables),
(2) a number of hidden layers, (3) and output layer (depen-
dent variables). The number of input and output neurons
is determined by the nature of the problem. The hidden
layers act like feature detectors and in theory, there can be
more than one hidden layer. Universal approximation the-
ory, however, suggests that a network with a single hidden
layer with a sufficiently large number of neurons can in-
terpret any input–output structure [9,10]. Therefore, in this
study, we have used only one layer of hidden-neurons. The
number of neurons in the hidden layer is determined by the
desired accuracy in the neural predictions. Hence, it may
be considered as a parameter for the neural net design.

The architect of neural nets may vary widely [5]. The net
shown in Fig. 3 is called a feed forward neural net. In the
feed forward neural net, all the neurons of a particular layer

Fig. 3. Neural net model.

are connected to all the neurons of the layer next to it. Other
types of nets that have been used in chemical engineering
applications include recurrent networks. They are similar
to feed forward neural nets, but also include time-delayed
feedback or recycle [5].

The input layer of neurons acts like a distributor and the
input to this layer is directly transmitted to the hidden layer.
The inputs to hidden and output layers are calculated by
performing a weighted summation of all the inputs received
from the preceding layer. Generally, the output from the
hidden layer is calculated by using a transfer function. Most
widely used transfer function is the sigmoid transfer function
given by

f (x) = 1

1 + e−x
(1)

Details of mathematical expressions used in this study are
reported in Appendix A.

5. Model development

The development of a neural net model generally consists
of three steps. The first step is to generate the data for the
training. The second step is the training of the neural net
with the selected data. Here, the net is exposed to a cer-
tain number of patterns and an objective function is used
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to minimize the errors in predicted and target values. The
third step (testing) involves exposure of the trained network
to unfamiliar dataset and consequently the accuracy in the
predicted pattern is adjudged.

5.1. Data collection

Since an ANN learns by examples, exposure to multiple
datasets improves the performance. Therefore, it is essential
that one should have a sufficiently large number of datasets
to enable a net training of valid generalization. A good
training dataset should include the effect/variation of all the
input variables on the output variables. Since it is not pos-
sible to collect data for the complete domain of a process,
a subset of all the possible input–output patterns is usually
used. However, in order to achieve a valid generalization,
the training set must be representative of the domain of
interest. A wrongly chosen training set may give very poor
predictions with datasets unknown to the net. However,
for some processes, it may be impossible to conceive all

Fig. 4. Typical results from photodegradation of Bayer liquor. (a) Effect of catalyst loading, TOC concentration= 700, 1050 and 1400 ppm, respectively
for dilution ratio 40, 30 and 20, lamp power= 200 W, initial solution pH= 11.75. (b) Effect of lamp power, TOC concentration= 700 ppm, initial
solution pH= 11.75. (c) Variation in TOC concentration with batch time, initial solution pH= 11.75, lamp power= 200 W, ‘Z’ is axial position of
sampling ports. (d) Effect initial solution pH, TOC concentration= 700 ppm, lamp power= 200 W, catalyst loading= 1.0 g l−1.

Table 1
Model variables and their ranges

Variable Range

Input layer lamp power 200–400 W
Catalyst loading 0.5–4.0 g l−1

Initial solution pH 8.0–12.0
Batch time (liquid) 90–120 min
TOC concentration 700–1400 ppm (60–120 mmol l−1)
Output layer reaction rate 0.008–0.05 mmol l−1 min−1

possible input–output patterns, the extrapolation of the in-
put data using ANN may result in unacceptable predictions
even with presumably right set of training data. Therefore,
a careful monitoring of the ANN predictions is warranted
while dealing with novel inputs.

In this case, the set of training and testing data was taken
from the photodegradation study of spent Bayer liquor in
an 18 l pilot scale reactor [7]. Typical data patterns are
shown in Fig. 4 and the range of the variables studied is
summarized in Table 1. Fig. 4(a) shows the effect of catalyst
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loading on reaction rate. Based on the dilution ratio, an
optimum catalyst loading between 1.5 and 3.5 g l−1 was ob-
tained. The reaction rate increased progressively with lamp
power (Fig. 4(b)). The TOC, in Fig. 4(c), decreased from
an initial value of about 700–500 ppm in about 100 min du-
ration. A slight axial gradient in TOC concentration (Z =
10, 30, 50 and 70 cm) could be attributed to insufficient
mixing and spatial variation of light intensity. An exponen-
tial decrease in the reaction rate with initial solution pH
(Fig. 4(d)) was consistent with the results obtained with pure
sodium oxalate [8]. Out of the several data points gener-
ated, 400 data points were selected for neural net training
and testing (350 points were chosen for training the neu-
ral nets and the remaining 50 data points were used in the
validation).

5.2. Training of artificial neural networks

A number of neural net models were trained and tested
using the 400 input–output patterns. As shown in Fig. 3, all
the models developed in this study consisted of three lay-
ers. The first layer was input layer, possessing five-neurons
(lamp power, catalyst loading, initial solution pH, liquid
residence time (batch time), and concentration of organic
species (TOC). The second layer was hidden layer, and it
contained variable number of neurons (2–20). The third
layer was the output layer and it contained one neuron (the
average reaction rate).

The training of ANN is essentially an optimization pro-
cess, where an error function is minimized by changing the
neural net weights. The most widely used error function is
the total sum of squared-error defined as [11]

E = 1

2

Ns∑
j=1

No∑
n=1

(yo
n,j − T o

n,j )
2 (2)

where the indicesj and n refer to pattern and output neu-
rons, respectively,yo

n,j the neural net prediction from thenth
output neuron forjth input–output pattern,T o

n,j the corre-
sponding target or actual value for the same neuron,Ns the
number of datasets, andNo is the number of output neurons
(variables). Whenever the net is subjected to a new train-
ing pattern, it calculates the output using the input variables
and the error given by Eq. (2) is estimated. In the present
case, backpropagation algorithm was used to update the
weights [11]. In backpropagation algorithm (see Appendix
A) for every input–output pattern, a forward-pass is used to
calculate the output and a backward-pass is used to adjust
the weight.

5.3. Selection of optimal net configuration

Several net configurations with one hidden layer were
trained using the input–output patterns. The trained nets
were used to predict the photodegradation rate for 50 input

Table 2
Prediction errors and correlation coefficients

Number of neurons
in hidden layer

Correlation
coefficient

RMSEa MAPE
(%)b

2 0.9123 0.0222 7.75
4 0.9938 0.0145 4.61
6 0.9939 0.0265 9.16
8 0.9955 0.0090 3.16

10 0.9930 0.0129 5.24
12 0.9948 0.0098 3.45
14 0.9937 0.0220 8.06
16 0.9955 0.0093 3.18
18 0.9955 0.0094 3.20
20 0.9929 0.0197 7.10

a RMSE: root mean square error.
b MAPE: mean absolute percentage error.

data not previously known to the nets. The following criteria
were used to assess the model predictions:

Cp =
∑Ns

j=1(Rp,j − R̄p,j )(Ra,j − R̄a,j )√∑Ns
j=1(Rp,j − R̄p,j )2

∑Ns
j=1(Ra,j − R̄a,j )2

(3)

RMSE=
√∑Ns

j=1(Rp,j − Ra,j )2

Ns
(4)

MAPE = 1

Ns

Ns∑
j=1

|Rp,j − Ra,j |
Ra,j

× 100 (5)

where Cp is the Pearson correlation coefficient, RMSE
the root mean square error, MAPE the mean absolute per-
centage error,Ra the actual value of reaction rate,Rp the
predicted value of reaction rate, the subscript ‘j’ refers to
validation pattern number, andNs is the number of validation
datasets.

Table 2 shows the response of various nets to the evalua-
tive criteria. With exception of the neural network with two
neurons in the hidden layer, the Pearson correlation coeffi-
cient is generally greater than 0.99 suggesting a reasonable
fit of the ANN model to the testing data. However, further
model discrimination based on the RMSE and MAPE in-
dicates the superiority of ANN models with 8, 16 and 18
neurons in the hidden layer over all other nets. These ANN
configurations had not only the highestCp-values, but also
the lowest RMSE and MAPE. Indeed, the configuration
with eight-neurons in the hidden layer was clearly the most
optimal for the present data, and was therefore, chosen
for subsequent investigation. Figs. 5 and 6 illustrate the
agreement between predicted and actual values of reaction
rate.

5.4. Comparison with regression model

The data used for training the neural nets were also
employed in the development of an independent nonlinear
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Fig. 5. ANN prediction vs. actual value.

regression model. This exercise provides:

−r̂TOC = 0.29× W0.75
lampe−0.212pH Ccat

(a + Ccat)2

× (1 − e−0.001τ )

τ
CTOC (6)

where−r̂TOC is the average reaction rate (mmol l−1 min−1),
Wlamp the lamp power (W),Ccat is the catalyst loading
(g l−1), τ the liquid residence time or batch time (min),CTOC
is the TOC concentration (mmol l−1), anda is the constant
with a value of 1.1 g l−1.

A plot of predicted reaction rates using Eq. (6) and actual
reaction rates (for the same input pattern as earlier described)
is shown in Fig. 7. The comparison of Fig. 7 has a correlation
coefficient of about 0.87, which is somewhat poorer than
the values obtained with the neural net models. Addition-
ally, the nonlinear regression fit gave higher values of RMSE
(0.026) and MAPE (16.2%). On the strength of these find-
ings, it would seem that neural network modeling is a better
approach for the modeling of photodegradation kinetics.

Fig. 6. Line plot of ANN prediction vs. actual value.

Fig. 7. Prediction from regression model vs. actual value.

5.5. Interpreting neural network weights

The neural net weight matrix can be used to assess the
relative importance of the various input variables on the
output variables. Garson [12] proposed an equation based
on partitioning of connection weights:

Ij =
∑m=Nh

m=1

((
|wih

jm|/∑N i

k=1|wih
km|

)
× |who

mn|
)

∑k=N i

k=1

{∑m=Nh

m=1

(
|wih

km|/∑N i

k=1|wih
km|

)
× |who

mn|
} (7)

whereIj is the relative importance of thejth input variable
on output variable,Ni andNh are the number of input and
hidden-neurons, respectively,w’s are connection weights,
the superscripts ‘i’, ‘h’ and ‘o’ refer to input, hidden and
output layers, respectively, and subscripts ‘k’, ‘ m’ and ‘n’
refer to input, hidden and output neurons, respectively.

The relative importance of various variables as calculated
by Eq. (7) is shown in Table 3. As may be seen, all of the
variables (lamp power, TOC concentration, catalyst loading,
initial solution pH, and liquid residence time or batch time)
have strong effects on the average photodegradation rate.
Therefore, none of the variables studied in this work could
have been neglected from the present analysis. However, as
expected the lamp power, initial solution pH and TOC con-
centration, with relative importance 26.9, 26.1 and 25.7%,
respectively, appeared to influence the reaction rate most

Table 3
Relative importance of input variables on the value of average reaction
rate

Variable Importance (%)

Lamp power 26.9
Catalyst loading 12.0
Initial solution pH 26.1
Batch time (liquid) 9.3
TOC concentration 25.7

Total 100
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markedly. The light intensity distribution (lamp power) is
of paramount importance in the analysis and design of pho-
toreactors [13]. The results of this study further emphasize
importance of lamp power. The pH of the reaction mixture
in photocatalytic systems is important for reactions involv-
ing ionic species [14,15]. The photodegradation of sodium
oxalate in Bayer liquor involves redox mechanism, there-
fore, the initial solution pH was found to be the second most
important variable (Ij = 26.1).

6. Conclusion

Artificial neural network modeling has been used to inves-
tigate the cause effect relationship prevalent in a photodegra-
dation process for the rejuvenation spent Bayer liquor.
Neural nets were trained with a set of 350 input–output pat-
terns using three-layered ANN configurations having one
hidden layer. The input layer of neurons consisted of five
variables—lamp power, catalyst loading, initial solution
pH, liquid residence time (batch time), and concentration
of organic species (TOC). Although all ANN models exam-
ined gave relatively high correlation coefficients (>0.97),
a configuration with eight-neurons in the hidden layer was
the most optimal considering all three evaluative criteria
(correlation coefficient, RMSE and MAPE). An indepen-
dent nonlinear regression model was also used to describe
the data. However, a comparative study revealed that ANN
configurations gave better predictions than the regression
model indicating that in highly complex systems, neural
network modeling may be a better option to data analysis.
Analysis also confirmed that all input variables selected
have significant effect on the reaction rate, although light
intensity, TOC concentration, and initial solution pH had
the most important influence.
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Appendix A. Numerical algorithm

1. The training and testing data is normalized using the
formula:

x̂ = x − xmin

xmax − xmin
(A.1)

wherexmin andxmax are minimum and maximum value
of the variable ‘x’.

2. The output from thekth neuron of the input layer is equal
to the input(x̂k) to this neuron:

ŷi
k = x̂k (A.2)

wherek = 1, 2, . . . , N i , andNi is number of input-neurons.
3. Initially, all the connection weights (wih

km andwho
mn) are

randomly-generated numbers (having values between 1
and−1).

4. The inputs to the hidden layer are calculated by carrying
out a weighted-summation of the all the outputs from
the input layer (first layer). Therefore, the input tomth
neuron of hidden layer is [16]:

xh
m =

N i∑
k=1

wih
kmŷ i

k (A.3)

wherem = 1, 2, . . . , Nh, superscripts ‘i’ and ‘h’ refer
to input and hidden layers,wih

km is the weight corre-
sponding to the connection betweenkth input-neuron
and mth hidden-neuron (Fig. 3), andNh is the number
of hidden-neurons.

5. Then the output from the neurons of the hidden layer is
calculated using

yh
m = f (xh

m) = 1

1 + exp(−xh
m)

(A.4)

wheref(x) is sigmoid transfer function defined in Eq. (1).
6. The inputs to the output layer are calculated from

weighted-summation of the outputs from the hidden
layer:

xo
n =

Nh∑
m=1

who
mny

h
m (A.5)

wheren = 1, 2, . . . , No, superscript ‘o’ refers to output
layer, who

mn is the weight corresponding to the connec-
tion betweenmth hidden-neuron andnth output-neuron
(Fig. 3),No the number of output neurons (in the present
case,No = 1).

7. The final output is equal to the input to the output
neurons:

yo
n = xo

n (A.6)

8. Calculate the total error between predicted and ‘actual
target’ values of the output variables [11]:

E = 1

2

Ns∑
j=1

No∑
n=1

(yo
n,j − T o

n,j )
2 (A.7)

where indexj = 1, 2, . . . Ns refers to different data
points (input–output pairs), andNs is the number of data
points.

If the error ‘E’ is less than a specified tolerance limit
then stop training else go to next step.
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9. Calculate the new value of the weights connecting hid-
den layer and output new layer using generalized delta
rule [17]:

who
mn(p + 1) = who

mn(p) + �who
mn(p) (A.8)

where

�who
mn(p) = β

Ns∑
j=1

(yo
n,j (1 − yo

n,j )(y
o
n,j − T o

n,j )y
h
m)

+α �who
mn(p − 1) (A.9)

whereα and β are momentum and learning rate para-
meters (generally, their values are set between 0.6 and
0.9), index ‘p’ refers to pattern number or iteration
number.

10. Similarly, update the weights for the connection between
input and hidden layer:

wih
km(p + 1) = wih

km(p) + �wih
km(p) (A.10)

where

�wih
km(p) = β

Ns∑
j=1


yh

m,j (1 − yh
m,j )

No∑
n=1

δn,jw
ho
mn(p)




+α �wih
km(p − 1) (A.11)

where δn,j = yo
n,j (1 − yo

n,j )(y
o
n,j − T o

n,j ) is the error
gradient for the output layer.

11. Go back to step 4.
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